Tag Archives: VLT

Is there potassium in WASP-31b’s atmosphere?

Many forefront facilities such as the Hubble Space Telescope and ESO’s Very Large Telescope are being pointed at exoplanets to try to find out what their atmospheres are made of. Yet such work is right at the limit of what can currently be done (though we hope that the James Webb Space Telescope will soon change that). So to what extent can we trust the results?

Here is an interesting puzzle. A new paper by Neale Gibson et al reports a spectrum of the atmosphere of WASP-31b, obtained with the FORS2 instrument on the VLT.

VLT/FORS2 Spectrum of the atmosphere of exoplanet WASP-31b

The spectrum is mostly flat, implying that the planet has a fairly cloudy atmosphere, but towards the right-hand side the orange line (a computed model) shows a strong emission line owing to potassium. The problem is that while one data point from previous HST data (small grey circle) indicates the presence of a strong potassium line, the new data from the VLT (the green-square data point) is incompatible with the HST data and would mean that there is no strong potassium line.

Gibson and co-authors put a lot of effort into trying to resolve the discrepancy, and consider whether Earth’s atmosphere might be contaminating the ground-based data, or whether unknown systematic uncertainties might be affecting the Hubble data. Overall they can only “highlight the need for caution” in interpreting such features. This illustrates that science at the cutting edge is never easy, and that much of an astronomer’s time is spent investigating whether one can trust the data one is working with.

The clear atmosphere of WASP-39b, seen from the ground

Most of the best detections of features in the atmospheres of transiting exoplanets have come from the Hubble Space Telescope, but time on hugely expensive satellites is in high demand and limited. Thus a recent paper led by Nikolay Nikolov from Exeter University is a welcome development. Nikolov and his team observed WASP-39b and detected a strong Sodium line from the planet, which indicates a clear atmosphere. The result came from the newly upgraded FORS2 spectrograph on ESO’s Very Large Telescope.

Sodium in the atmosphere of exoplanet WASP-39b

The important feature of the plot is that the VLT data (black) are every bit as good as those from a previous detection of the same line using the Hubble. While Hubble has the advantage of being in space, the VLT has a much larger mirror and can observe whole transits without the gaps seen in Hubble data owing to its low-Earth orbit.

The similar result from a very different facility also gives confidence in the correctness of such detections of features in exoplanet atmospheres, which are, after all, pushing current technology to its limits.