Author Archives: waspplanets

WASP-South finds the smallest known star

In order to qualify as a proper “star” (as opposed to a brown dwarf or a stellar remnant) it needs to be producing nuclear fusion of hydrogen in its central regions. That requires a mass of at least 83 times that of Jupiter in order for gravity to compress the central regions sufficiently.

Interestingly, despite having masses far greater than any planet, the smallest possible stars are expected to have radii very similar to that of Saturn or Jupiter. That means that in a transit survey such as WASP they can look very like planets, it is only the radial-velocity follow-up observations that show that they a stellar mass.

Alexander von Boetticher et al have just announced the discovery of the smallest known star, which with a mass of 85 ± 4 Jupiters is right at the lower limit of what is possible. The mass and radius of the object, dubbed EBLM J0555−57Ab, are shown below compared to other stars and brown dwarfs, along with (red and blue lines) theoretical models for different ages.

The discovery of EBLM J0555 was a by-product of the WASP-South survey, found because of its planet-like size. In the graphic below the star is compared with Saturn and the slightly larger M-dwarf star TRAPPIST-1.

The discovery has been carried by many websites including The Atlantic, CNET, The Daily Mail, The Smithsonian, Astronomy Magazine, gizmodo, astrobites, phys.org and over 30 others.

Discovery of the hot Jupiter WASP-167b (KELT-13b)

The websites sci-news.com and phys.org have published articles on our recent discovery of WASP-167b (KELT-13b) — the highest WASP number so far announced — along with an image comparing it to Jupiter:

WASP-167b is notable for two reasons. First, it orbits a hot star with a surface temperature of 7000 Kelvin. Planets transiting hot stars are harder to validate since the star’s spectra shows only broad and weak spectral lines, which makes it harder to get accurate radial-velocity measurements and thus prove that the transiting object has the right mass to be a planet.

The WASP project had tended to put such candidates on the back-burner and go after easier targets, but having succeeded in finding over 100 planets transiting cooler stars we are now focussing on the hot ones.

Secondly, WASP-167b is a joint discovery with the KELT project (hence the additional name of KELT-13b), the first time two of the transit-search teams have combined an announcement. Both projects had put much effort and telescope time into following up this candidate, and a joint paper recognises both of these campaigns.

Hubble’s tale of two exoplanets: WASP-67b and HAT-P-38b

NASA have put out a press release entitled: “Hubble’s Tale of Two Exoplanets: Nature vs. Nurture”.

The article compares WASP-67b and HAT-P-38b, noting how similar they are in size and temperature, both orbiting similar stars at a similar orbital distance. But then Hubble’s Wide Field Camera 3 found that WASP-67b has a very cloudy atmosphere whereas HAT-P-38b has much clearer skies.

From the press release: Perhaps one planet formed differently than the other, under a different set of circumstances. “You can say it’s nature versus nurture,” explains co-investigator Kevin Stevenson. “Right now, they appear to have the same physical properties. So, if their measured composition is defined by their current state, then it should be the same for both planets. But that’s not the case. Instead, it looks like their formation histories could be playing an important role.”

“Astronomers measured how light from each parent star is filtered through each planet’s atmosphere. HAT-P-38 b did have a water signature indicated by the absorption-feature peak in the spectrum. This is interpreted as indicating the upper atmosphere is free of clouds or hazes. WASP-67 b, has a flat spectrum that lacks any water-absorption feature, suggesting most of the planet’s atmosphere is masked by high-altitude clouds.”

The NASA press release has been picked up and reported on several dozen science-related websites.

Credits: Artwork: NASA, ESA, and Z. Levy (STScI); Science: NASA, ESA, and G. Bruno (STScI)

Hubble finds a stratosphere in WASP-121b

Orbiting a hot F-star in only 1.27 days, WASP-121b is a highly irradiated hot Jupiter found by Laëtitia Delrez et al using the WASP-South survey. A team led by Tom Evans at Exeter has now pointed the Hubble Space Telescope at WASP-121b and found that its atmosphere shows a “stratosphere”. That is, the higher layers of the atmosphere appear to be hotter than the lower layers.

This is possible if molecules high in the atmosphere absorb radiation very efficiently. The “stratosphere” interpretation comes from finding spectral features caused by water, but seeing them in emission (as expected if the atmospheric temperature increases with height) rather than in absorption (expected if the temperature declines with height).

The data show the Hubble spectrum observed during transit using the WFC3 instrument. The red line is a model including a stratosphere. The blue lines are, for comparison, colder “brown dwarfs” which don’t have a stratosphere. The WFC3 data (circles with error bars) clearly favour the stratosphere interpretation.

NASA have put out a press release about the discovery, while the press team at Exeter have produced an illustration of the highly irradiated planet:

The story has been picked up by CNN, The Telegraph, New Scientist, NDTV, phys.org, the Mail Online, the International Business Times, Gizmodo Australia and over 40 other news and science websites.

One we missed: EPIC 228735255b

At WASP we routinely “reverse engineer” transiting exoplanets announced from other surveys to see whether we could have found them. Since the K2 mission has vastly better photometry it will find anything we’ve missed in K2 fields.

An interesting case is EPIC 228735255b, a transiting hot Jupiter in a 6.57-day orbit around a V = 12.5, G5 star, newly announced by a team led by Helen Giles, a PhD student at the University of Geneva.

In principle this planet should be within the reach of the WASP survey. However, at V = 12.5 it is at the faint end of the survey, and with a period of 6.57 days (fairly long for hot Jupiters) fewer transits get covered. Further, the WASP camera use large pixels, in order to get wide-field coverage, and for this object there is another star on the edge of our photometric aperture (see left), which degrades our photometry. Lastly, at a declination of −09 it is just below the sky covered by SuperWASP-North and so we have data only from WASP-South, principally 4600 data points from 2009 and 5700 data points from 2010.

Nevertheless, the transit was detected in WASP data, found by our standard transit-search algorithms (the WASP transit period is 6.5692 days, which compares with the Giles et al period of 6.5693 days, where the match affirms that our detection is real).

The plots show the search periodogram, showing a clear “spike” at the transit period and at twice the transit period, and (below) the WASP data folded on the transit period (transit is at phase 0).

The problem is that there is always a lot of “red noise” in WASP data, and picking candidates always involves a judgement call as to whether the signal is real. This one was just not quite convincing enough for us. The folded light curve looks pretty ratty, and the individual transit lightcurves are not particularly convincing. It had been flagged as a possible candidate, but rated as not secure enough a detection to send to the radial-velocity follow-up teams. Perhaps WASP detections might be more reliable than we thought!

While the WASP data are now superseded by the K2 photometry, it is worth recording the WASP transit ephemeris, which is period = 6.56919 (+/− 0.00036) days, epoch HJD = 2455151.1052 (+/− 0.0084), and transit width 3.56 hrs (which results from transit features spanning HJD 2454914 to 2455348).

Since these observations are from March 2009 to May 2010, they greatly extend the baseline of the Giles et al photometry, which covers 2016 July to 2017 March, and so will help refine the ephemeris to assist future observations.

The imminent TESS mission will find all the hot Jupiters that we’ve missed over the whole sky (whereas K2 is confined to the ecliptic plane), but will observe regions of sky for only a limited period and so give poor ephemerides. The above comparison suggests that WASP data will still be of valuable in being able to greatly improve the ephemerides for many TESS finds.

What happens to short-period hot-Jupiter planets?

Hot-Jupiter planets close to their host star will arouse tides in the host star, and the gravitational pull from tidal bulges will cause the planet to gradually spiral inwards. What happens to them? One possibility is that they end up spiralling into the star and are engulfed.

Another possibility is that strong irradiation from the star blasts off the planet’s atmosphere. Over time, all that would be left might be the small, rocky core of the original Jupiter-size gas giant. Maybe, then, the small, rocky, Earth-size planets seen by Kepler at ultra-short orbital periods are the remnants of hot Jupiters?

The figure shows the planetary radius versus the orbital period for a sample of Kepler planets. The Earth-size, ultra-short-period planets are in red, the hot Jupiters are in orange.

Planet radius versus orbital period for Kepler planets

Now, a team led by Joshua Winn of Princeton has tested this idea. The looked at the host stars of both the small, rocky ultra-short-period planets and of the hot Jupiters, and measured their metallicity (the fraction of elements heavier than hydrogen and helium, for which the iron abundance, denoted [Fe/H], is a good proxy).

They ended up with the following figure, which shows the metallicity distribution for the small, rocky planets (red histogram), for medium, sub-Neptune-size planets (blue histogram) and for hosts of hot Jupiters (orange histogram).

Metallicity distribution for hot Jupiter hosts versus hosts of small, rocky, ultra-short-period planets

The distribution for the rocky-planet hosts is significantly different from that for the hot-Jupiter hosts, showing that they cannot be part of the same population. This means that it is unlikely that hot Jupiters turn into rocky, ultra-short-period planets. Such planets might, however, be descended from hot Neptune-sized planets, for which the host-star metallicity does have the right distribution.

Super-Neptune WASP-107b has an oblique orbit

WASP-107b is only twice the mass of Neptune but nearly the radius of Jupiter. It is thus a hugely bloated and fluffy exoplanet and one of the more important of the recent WASP discoveries, being a prime target for atmospheric characterisation (see the discovery paper by Anderson et al 2017).

WASP-107b was also in the Campaign-10 field of the K2 mission, leading to a Kepler-quality photometric lightcurve. Recent papers by two teams, led by Teo Močnik and Fei Dai, have arrived at a similar conclusion: WASP-107b seems to be in an oblique orbit, rather than in an orbit aligned with the rotation axis of the host star.

spot_tran

The conclusion comes from star spots. If the orbit is aligned, consecutive transits will repeatedly cross the same star spot, producing a “bump” in the lightcurve each time, whereas if the orbit is oblique this will not happen.

Thus one can play the game of looking for transit bumps and seeing if they repeat. But spots can change, by growing or shrinking, so is a smaller bump in the next transit the same spot, or a different one? Also, if there is some uncertainty in the rotational period of the star, then we’re not fully sure exactly where in the next transit the spot will recur.

Star spots in transits of exoplanet WASP-107b

In the figure at left (in which the transit itself, between the dashed lines, has been removed, leaving only the starspot bumps), obvious spots are circled in red, while possible spots are marked with a lighter red. The rotational period of the star is nearly three times the orbital period of the planet, and so, if the spots recurred, they would be seen every three transits. (The gap, and thus the missing of transits 3, 4 and 5, arose from a spacecraft malfunction.)

The conclusion is that the star spots do not seem to recur and thus that WASP-107b is in an oblique orbit.