Tag Archives: WASP-12b

Orbital-period decay in hot-Jupiter WASP-12b?

Closely orbiting hot-Jupiter exoplanets are likely to be spiralling inwards towards their host star as a result of tidal interactions with the star. A new paper by Maciejewski et al reports a possible detection of this orbital-period decay in WASP-12b.

The authors have acquired 31 new transit light-curves over four years, and detect a trend under which the latest transits occur about a minute early compared to an unchanging ephemeris.

WASP-12b orbital period decay

Transits of WASP-12b. O–C is the observed time compared to that calculated from an unchanging orbital period. The time (x-axis) is given in both a count of days (BJD) and a count of transits.

This is the most convincing claim yet of a changing orbital period in a hot Jupiter. Whether it shows the spiral infall, though, is less clear. As the authors explain, other tidal interactions between the star and the planet, such as that causing apsidal precession, could account for the effect. Further, in close binary stars there are known to be similar period changes on decade-long timescales that are not fully understood, but which might be caused by Solar-like magnetic cycles on the star.

One suggestion that this is not spiral infall comes from the deduced value of the tidal quality factor, Q, which the authors calculate as 2.5 x 105. This is lower than other estimates of Q as nearer 107.

The way to settle the issue will be to accumulate more data over a longer timespan until the case for spiral infall becomes overwhelming. It will thus be important to continue monitoring WASP-12b, and the other short-period hot Jupiters, over the coming decades.

Hubble study of water in hot-Jupiter atmospheres

NASA have put out a press release regarding the largest-ever study of hot-Jupiter atmospheres by the Hubble Space Telescope and the Spitzer Space Telescope. Of the ten planets studied, six are WASP discoveries.

Clear to cloudy hot Jupiters (annotated)

The results, published in Nature, report that hot Jupiters are a diverse group that have atmospheres ranging from clear to cloudy. Strong water absorption lines are seen when the planets have a clear atmosphere, but less so when the atmospheres are dominated by clouds and hazes.


Planets such as WASP-17b and WASP-19b have clear atmospheres and show the strongest water features, whereas planets such as WASP-12b and WASP-31b are more cloudy.

The NASA press release has so far resulted in articles on over 110 news websites worldwide. The paper was lead-authored by David Sing of the University of Exeter.

Magnetospheres of hot Jupiters

If a hot Jupiter has a magnetic field of a few Gauss it would be surrounded by a magnetosphere that would carve out a hole in the stellar wind of the host star. Since the planet orbits rapidly, this would lead to a “bow shock” where the magnetosphere ploughs through the stellar wind.

In a new paper, Richard Alexander, of the University of Leicester, and co-authors, report computer simulations of this effect for several hot Jupiters, including WASP-12b and WASP-18b.

Hot Jupiter magnetospheres

In the colour-coded figure (see scale on the right) the blue and red show the density of the stellar wind. A low-density (black) magnetosphere surrounds each planet (white dots).

Since these planets orbit edge on to us, the bow shock would absorb ultra-violet light from the star, and so produce a characteristic light-curve with a broad dip preceding the transit.

Hot Jupiter magnetospheric light curves

This magnetospheric bow-shock is a possible alternative explanation for the UV absorption observed in WASP-12, which has previously been attributed to material being lost from the planet owing to Roche-lobe overflow. Alexander et al suggest that WASP-18 is a critical test of these models, since the much higher gravity of the massive planet WASP-18b means that there should not be any Roche-lobe overflow.

WASP planets will get names in a public vote

Written by Tom Wagg

WASP planets, like all exoplanets, get catalogue numbers but, so far, have not been actually named. The International Astronomical Union policy is now about to change, with the announcement of a contest in which astronomy clubs and non-profit organisations can submit names for exoplanets.

The worldwide public will then be able to vote on their favourite name for an exoplanet and the winning names will be officially sanctioned by the IAU.


Among the 305 exoplanets which have been selected for the first round of naming are 10 of the earliest discovered WASP exoplanets. These include WASP-12b, which has recently been found to contain water, and WASP-10b, which is thought to have a massive outer companion.

The host stars of WASP-7b and WASP-14b are both bright enough to be visible in a pair of binoculars, one in the Northern Hemisphere and the other in the Southern Hemisphere, which means that it will be possible to name a WASP planetary system that you can readily point to at a star party.

Members of the public can propose names for just one exoplanet, or for a whole planetary system such as 55 Cancri which includes five exoplanets.

Once the naming process is over we will post the new names of our WASP planets and the creators of these names on this blog. To get involved simply follow this link and submit your proposed exoplanet names for your chance to be credited with naming your own exoplanet!

NASA finds water on three WASP planets

A team using NASA’s Hubble Space Telescope has detected water in the atmosphere of five exoplanets. Three of these are WASP planets, WASP-12b, WASP-17b and WASP-19b. They were chosen because they orbit relatively bright stars and because they are close-in “hot Jupiter” planets with bloated and puffed-up atmospheres, the best targets for the highly demanding task of discerning molecules in those atmospheres. This study demonstrates how valuable WASP planets are for exoplanet research.

WASP-12b illustration.

An artist’s conception of WASP-12b, a hot-Jupiter planet orbiting so closely that its atmosphere is blasted by irradiation from its star

The NASA press release has been reported by websites and newspapers worldwide. It reads:

Hubble Traces Subtle Signals of Water on Hazy Worlds      Dec. 3, 2013

Using the powerful­ eye of NASA’s Hubble Space Telescope, two teams of scientists have found faint signatures of water in the atmospheres of five distant planets.

The presence of atmospheric water was reported previously on a few exoplanets orbiting stars beyond our solar system, but this is the first study to conclusively measure and compare the profiles and intensities of these signatures on multiple worlds.

The five planets — WASP-17b, HD209458b, WASP-12b, WASP-19b and XO-1b — orbit nearby stars. The strengths of their water signatures varied. WASP-17b, a planet with an especially puffed-up atmosphere, and HD209458b had the strongest signals. The signatures for the other three planets, WASP-12b, WASP-19b and XO-1b, also are consistent with water.

“We’re very confident that we see a water signature for multiple planets,” said Avi Mandell, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., and lead author of an Astrophysical Journal paper, published today, describing the findings for WASP-12b, WASP-17b and WASP-19b. “This work really opens the door for comparing how much water is present in atmospheres on different kinds of exoplanets, for example hotter versus cooler ones.”

The studies were part of a census of exoplanet atmospheres led by L. Drake Deming of the University of Maryland in College Park. Both teams used Hubble’s Wide Field Camera 3 to explore the details of absorption of light through the planets’ atmospheres. The observations were made in a range of infrared wavelengths where the water signature, if present, would appear. The teams compared the shapes and intensities of the absorption profiles, and the consistency of the signatures gave them confidence they saw water. The observations demonstrate Hubble’s continuing exemplary performance in exoplanet research.

“To actually detect the atmosphere of an exoplanet is extraordinarily difficult. But we were able to pull out a very clear signal, and it is water,” said Deming, whose team reported results for HD209458b and XO-1b in a Sept. 10 paper in the same journal. Deming’s team employed a new technique with longer exposure times, which increased the sensitivity of their measurements.

The water signals were all less pronounced than expected, and the scientists suspect this is because a layer of haze or dust blankets each of the five planets. This haze can reduce the intensity of all signals from the atmosphere in the same way fog can make colors in a photograph appear muted. At the same time, haze alters the profiles of water signals and other important molecules in a distinctive way.

The five planets are hot Jupiters, massive worlds that orbit close to their host stars. The researchers were initially surprised that all five appeared to be hazy. But Deming and Mandell noted that other researchers are finding evidence of haze around exoplanets.

“These studies, combined with other Hubble observations, are showing us that there are a surprisingly large number of systems for which the signal of water is either attenuated or completely absent,” said Heather Knutson of the California Institute of Technology, a co-author on Deming’s paper. “This suggests that cloudy or hazy atmospheres may in fact be rather common for hot Jupiters.”Hubble’s high-performance Wide Field Camera 3 is one of few capable of peering into the atmospheres of exoplanets many trillions of miles away. These exceptionally challenging studies can be done only if the planets are spotted while they are passing in front of their stars. Researchers can identify the gases in a planet’s atmosphere by determining which wavelengths of the star’s light are transmitted and which are partially absorbed.