Tag Archives: exoplanet transits

Gaia detects transits of WASP exoplanets

ESA’s Gaia satellite is a €740-million mission to map a billion stars in our galaxy. By observing repeatedly with unprecedented astrometric precision it is measuring the parallaxes, and thus the distances, of hundreds of millions of stars, and so mapping out the 3-D structure of our galaxy.

Gaia can detect exoplanets in two ways, first by astrometry (measuring the position of a star), so detecting the wobble in the star’s location caused by an orbiting massive planet, and secondly by the transit method, detecting the dip in the light of a star caused by a transiting planet.

The Gaia team have just announced the first detections of exoplanet transits, by looking at the accumulated Gaia data on two already-known WASP planets.

ESA's Gaia satellite detects its first exoplanet transit

The plot shows a year’s worth of Gaia data of the star WASP-19, folded on the 0.79-day orbital period of the planet WASP-19b (the three different panels are the star’s magnitude in three different colours). The coverage is sparse — it is designed for astrometric measurements, not for recording lightcurves — but one observation was made in-transit, demonstrating that Gaia can indeed detect exoplanet transits.

The ESA/Gaia team have also looked at the data on WASP-98, and again detect the transit of WASP-98b.

ESA's Gaia satellite detects exoplanet transit of WASP-98b

Exoplanet cloudiness from transit lightcurves?

An interesting new paper by von Paris et al has explored the effect of the cloudiness of a planet on transit lightcurves. If a planet were cloudy on one limb, but clear on the other limb, then that could make the transit slightly asymmetric. The authors show that, in principle, this effect could be detectable with good-enough quality lightcurves.

An apparent shift in the transit:

Shifted transit

Would then lead to residuals, relative to a “perfect” transit, looking like:

traresids

The authors then claim a possible detection of such an effect in the hot Jupiter HAT-P-7b.

This might open up a new way of exploring the atmospheres of exoplanets. Whether this can ever be done reliably, however, is debatable. A big assumption in the authors’ simulations is that the star being transited is uniform. However, we know that stars are usually magnetically active and so are patchy. Star spots and bright patches on the star are likely to have a greater effect on the transit profile than the cloudiness of the planet’s atmosphere. Still, the effect is worth exploring, particularly for planets transiting magnetically quiet stars.