Tag Archives: WASP-53

Outer-orbiting companions of hot-Jupiter planets appear to be co-planar

On-going radial-velocity monitoring of WASP hot Jupiters has shown that some of them have companions, additional Jupiter-mass planets in much wider orbits.

This might be part of the answer as to why there are hot Jupiters at all. Standard planet-formation theory suggests that they must form much further out, where it is colder and where ice can form, enabling bits of pre-planetary debris to clump together. Thus one solution is that gravitational perturbations by third bodies (wide-orbit massive planets or companion stars) push the inner planets into highly eccentric orbits, where tidal capture then circularises them into hot-Jupiter orbits.

But, if this “Kozai effect” is to work, the outer planets need to be in orbits tilted with respect to the orbits of the hot Jupiters. This requires i < 65 degrees, rather than the co-planar i = 90 degrees.

A new paper by Juliette Becker et al reports an analysis of six hot-Jupiter systems orbiting cool stars that have an outer planetary companion. These are WASP-22, WASP-41, WASP-47, WASP-53, HAT-P-4 and HAT-P-13. Though a statistical analysis they show that the outer planets are most likely co-planar, with orbits tilted by no more than 20 degrees. They thus argue that Kozai-driven high-eccentricity migration is not the dominant way of forming hot Jupiters.

Advertisements

Long-period brown dwarfs for WASP-53 and WASP-81

The WASP project has just released the discovery paper for the systems WASP-53 and WASP-81, led by Amaury Triaud. We’ve known about close-in hot-Jupiter planets around these two stars for several years, but the paper had been delayed owing to an interesting development: the radial-velocity monitoring showed that the planets both had longer-period brown-dwarf companions. Several years of data have been needed to prove the reality of these brown dwarfs, now dubbed WASP-53c and WASP-81c.

Radial velocity monitoring of WASP-53 and WASP-81

The plot shows the “radial velocities” — how much the star is tugged about by the gravity of orbiting bodies — as a function of time (in BJD, a count of days). WASP-53 is on the left and WASP-81 on the right. The red line is a fit to the data. The close-in hot Jupiters (WASP-53b and WASP-81b, with orbits of 3.3 and 2.7 days respectively) cause short-period variations, so fast that they appear as a solid red swathe.

In addition, though, WASP-53 shows a variation owing to a more-massive brown dwarf with an orbital period of about ten years and a mass of at least 16 Jupiters. Similarly, WASP-81 shows a variation caused by a 57-MJup brown dwarf in a 3.5-yr orbit. Both outer orbits are highly eccentric.

The presence of the brown dwarfs has interesting consequences for ideas about how planets form. It is generally accepted that hot Jupiters form further out, where it is colder, where ices can stick together and form a planetesimal. But the presence of eccentric brown dwarfs, disrupting the proto-planetary disc in that region, would have made that hard. So maybe the planets formed further in? Or maybe the brown dwarfs were originally elsewhere, and moved to their current orbits later on?