Category Archives: Hot Jupiters

WASP-18b has a smothering stratosphere without water

NASA Goddard Space Flight Center and NASA Jet Propulsion Laboratory have put out press releases about observations of WASP-18b with the Hubble Space Telescope and the Spitzer Space Telescope.

The main finding is that WASP-18b, a highly irradiated hot Jupiter in a tight orbit around a hot F-type star, is “wrapped in a smothering stratosphere loaded with carbon monoxide and devoid of water”.

The team determined this by detecting two types of carbon monoxide signatures, an absorption signature at a wavelength of about 1.6 micrometers and an emission signature at about 4.5 micrometers.”

The findings have been reported in many media outlets including: Newsweek, The Independent, The Sun, the Daily Mail, the International Business Times, phys.org, and more than 20 other websites including Forbes magazine, who have produced the following infographic:

Advertisements

Hot Jupiter irradiation and the efficiency of heat recirculation

Here’s an interesting plot from a new paper by Michael Zhang et al.

The x-axis is the irradiation temperature for a sample of hot-Jupiter exoplanets; that is, how blasted the day-side of their atmosphere is by irradiation from the host star. This depends on the temperature of the star, its size, and the closeness of the orbit.

The heat of the day side of the planet is then transported to the night side by winds (the planets are phase-locked, so the same side always faces the star). The efficiency of this re-circulation of heat then determines whether the hottest regions of the planet are directly facing the star, or whether they are offset by some angle. This angle can by measured by looking at the “phase curve” radiation in the infra-red.

The y-axis then shows the observed offset angle as a function of the irradiation. The plot shows that the offset angle appears to be highest for cooler planets, and then decreases as irradiation increases, but then perhaps increases again for the very hottest planets such as WASP-33b.

There is, however, also a lot of scatter in the plot. The authors speculate that this might result from differing metallicities of the planets, which affects how well they form clouds, which can then determine the albedo of the planet, and thus how much irradiation is simply reflected.

Outer-orbiting companions of hot-Jupiter planets appear to be co-planar

On-going radial-velocity monitoring of WASP hot Jupiters has shown that some of them have companions, additional Jupiter-mass planets in much wider orbits.

This might be part of the answer as to why there are hot Jupiters at all. Standard planet-formation theory suggests that they must form much further out, where it is colder and where ice can form, enabling bits of pre-planetary debris to clump together. Thus one solution is that gravitational perturbations by third bodies (wide-orbit massive planets or companion stars) push the inner planets into highly eccentric orbits, where tidal capture then circularises them into hot-Jupiter orbits.

But, if this “Kozai effect” is to work, the outer planets need to be in orbits tilted with respect to the orbits of the hot Jupiters. This requires i < 65 degrees, rather than the co-planar i = 90 degrees.

A new paper by Juliette Becker et al reports an analysis of six hot-Jupiter systems orbiting cool stars that have an outer planetary companion. These are WASP-22, WASP-41, WASP-47, WASP-53, HAT-P-4 and HAT-P-13. Though a statistical analysis they show that the outer planets are most likely co-planar, with orbits tilted by no more than 20 degrees. They thus argue that Kozai-driven high-eccentricity migration is not the dominant way of forming hot Jupiters.

First results on the atmosphere of WASP-107b

Being a Neptune-mass planet (0.12 MJ) bloated to a near-Jupiter radius (0.94 RJ) makes WASP-107b’s atmosphere very fluffy, and that, coupled with it transiting a moderately bright K star (V = 11.6) makes it a superb target for atmospheric characterisation.

Laura Kreidberg et al have pointed the Hubble Space Telescope at WASP-107b to make the first atmospheric study. Here’s the WFC3 spectrum:

Hubble Space Telescope spectrum of WASP-107b

The broad features at 1.15 and 1.4 microns are due to water absorption in WASP-107b’s atmosphere. Kreidberg et al model the features, finding that they are compatible with expectations given solar abundances. They are not deep enough, though, to be produced by fully clear skies, and a layer of high-altitude cloud is also required.

WASP-107b is one of the prime exoplanets already chosen for early observations with the imminent James Webb Space Telescope, so it is exciting to know that its atmosphere does show prominent molecular features.

Titanium oxide in the atmosphere of WASP-19b

The European Southern Observatory have put out press release about observations of WASP-19b with the Very Large Telescope. A team led by ESO Fellow Elyar Sedaghati have found titanium oxide in the atmosphere of an exoplanet for the first time.

ESO’s graphic (credit: ESO/M. Kornmesser) illustrates how observations during transit allow us to analyse an exoplanet’s atmosphere. The star light shines through the atmosphere, where light at particular wavelengths is absorbed by molecules, causing the light that we see to carry a distinctive signature of the atmosphere’s composition.

The team observed three different transits of WASP-19b, each in a different colour, to produce one of the best transmission spectra of an exoplanet so far. The titanium oxide (TiO) features are marked, along with those from water (H2O), sodium (Na) and scattering due to haze.

ESO’s press release has led to coverage on several dozen news- and science-related websites. ESO have also produced an artist’s impression of WASP-19b:

WASP-12b a “Blistering Pitch-Black Planet”.

NASA has put out a press release about Hubble Space Telescope observations of WASP-12b. Taylor Bell et al find that WASP-12b “traps at least 94 percent of the visible starlight falling into its atmosphere”, making it “as black as fresh asphalt”.

WASP-12b “as black as asphalt” (Credit: NASA, ESA, and G. Bacon, STScI)

The article explains that WASP-12b, in a very close, 1.2-day orbit, is so irradiated by its host star that “clouds probably cannot form to reflect light back into space. Instead, incoming light penetrates deep into the planet’s atmosphere where it is absorbed by hydrogen atoms and converted to heat energy”. NASA’s press release has led to coverage on several dozen websites.

WASP-12b is one of the more important of the WASP discoveries, with over 30 refereed papers so far focused on understanding it. Most notably, the fierce stellar irradiation means that material is boiling off the planet and forming a cloud surrounding it.

Strong Sodium and Potassium absorption in the atmosphere of WASP-103b

Characterising the atmospheres of extrasolar planets is a booming activity, both from ground-based observatories and using the Hubble Space Telescope. The latest study is of the highly-irradiated and hot planet WASP-103b, which was found by WASP-South transiting a star with an ultra-short orbit of only 0.93 days (Michaël Gillon et al 2014).

Monika Lendl et al have now used the Gemini/GMOS instrument to probe its atmosphere. The main finding is prominent features caused by absorption of light by sodium (Na) and potassium (K) ions:

Such features imply that WASP-103b has relatively clear skies, since cloudy or hazy atmospheres tend to produce flat, featureless spectra. The authors explain that: “This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra”.