Tag Archives: transits

Super-Neptune WASP-107b has an oblique orbit

WASP-107b is only twice the mass of Neptune but nearly the radius of Jupiter. It is thus a hugely bloated and fluffy exoplanet and one of the more important of the recent WASP discoveries, being a prime target for atmospheric characterisation (see the discovery paper by Anderson et al 2017).

WASP-107b was also in the Campaign-10 field of the K2 mission, leading to a Kepler-quality photometric lightcurve. Recent papers by two teams, led by Teo Močnik and Fei Dai, have arrived at a similar conclusion: WASP-107b seems to be in an oblique orbit, rather than in an orbit aligned with the rotation axis of the host star.

spot_tran

The conclusion comes from star spots. If the orbit is aligned, consecutive transits will repeatedly cross the same star spot, producing a “bump” in the lightcurve each time, whereas if the orbit is oblique this will not happen.

Thus one can play the game of looking for transit bumps and seeing if they repeat. But spots can change, by growing or shrinking, so is a smaller bump in the next transit the same spot, or a different one? Also, if there is some uncertainty in the rotational period of the star, then we’re not fully sure exactly where in the next transit the spot will recur.

Star spots in transits of exoplanet WASP-107b

In the figure at left (in which the transit itself, between the dashed lines, has been removed, leaving only the starspot bumps), obvious spots are circled in red, while possible spots are marked with a lighter red. The rotational period of the star is nearly three times the orbital period of the planet, and so, if the spots recurred, they would be seen every three transits. (The gap, and thus the missing of transits 3, 4 and 5, arose from a spacecraft malfunction.)

The conclusion is that the star spots do not seem to recur and thus that WASP-107b is in an oblique orbit.

Four planets around WASP-47!

As NASA’s Kepler mission covers fields in the ecliptic previously surveyed by WASP, it is obtaining photometry of unprecedented quality on some WASP planets. The big news this week is the discovery of two more transiting planets in the WASP-47 system.

WASP-47 had seemed to be a relatively routine hot-Jupiter system with the discovery of a Jupiter-sized planet in a 4-day orbit, reported in a batch of transiting planets from WASP-South by Hellier et al 2012.

But WASP-47 is anything but routine. Now Becker et al have announced that the Kepler K2 lightcurves show two more transiting planets: a super-Earth planet in an orbit of only 0.79 days, and a Neptune-sized planet in an orbit of 9.0 days. Being much smaller, these planets cause transits that are too shallow to have been seen in the original WASP data.

WASP-47 transits with Kepler K2

The super-Earth, labelled WASP-47c, has a radius of 1.8 Earths while the Neptune, labelled WASP-47d, has a radius of 3.6 Earths. The triple-planet system is dynamically stable, but the gravitational interaction causes perturbations in the orbits, leading to variations in the times of the transits.

Such “transit-timing variations” or TTVs lead to estimates of the planetary masses. Becker et al find that the hot Jupiter has a mass of 340 Earths (consistent with the mass of 360 Earths originally reported by Hellier et al from radial-velocity measurements), while the Neptune has a mass of 9 Earths. The super-Earth must be less massive than that, but current timing measurements are not sensitive enough to say more.

WASP-47 TTVs Transit timing variations

As if three planets were not enough, there is a probable fourth planet orbiting WASP-47. The Geneva Observatory group routinely monitor known WASP systems, taking radial-velocity measurements over years, to look for longer-period planets. Marion Neveu-VanMalle and colleagues have recently reported the detection of another Jupiter-mass planet orbiting WASP-47, this time in a much wider orbit of 571 days.

The WASP-47 system has now become hugely interesting for understanding exoplanets, and will trigger many additional observations of the system. For example, being bright enough to allow good radial-velocity data, it will provide a much-needed check that the mass estimates from TTVs match those from the more traditional radial-velocity technique.

The system will also be of strong interest to theorists, who will want to understand the formation and origin of a planetary system with this architecture. One immediate consequence is that it shows that a hot Jupiter can arise by inward migration through the proto-planetary disk, without destroying all other planets in its path.