Category Archives: exoplanet atmospheres

Detection of barium in the atmospheres of WASP-76b and WASP-121b

ESO have put out a press release reporting the discovery of barium in the atmospheres of ultra-hot Jupiters WASP-76b and WASP-121b, based on observations with the ESPRESSO spectrograph on ESO’s Very Large Telescope. Barium is the heaviest element so far detected in an exoplanet.

“The puzzling and counterintuitive part is: why is there such a heavy element in the upper layers of the atmosphere of these planets?” says Tomás Azevedo Silva, lead author of the paper.

This artist’s impression shows an ultra-hot exoplanet, a planet beyond our Solar System, as it is about to transit in front of its host star. When the light from the star passes through the planet’s atmosphere, it is filtered by the chemical elements and molecules in the gaseous layer. With sensitive instruments, the signatures of those elements and molecules can be observed from Earth. Using the ESPRESSO instrument of ESO’s Very Large Telescope, astronomers have found the heaviest element yet in an exoplanet's atmosphere, barium, in the two ultra-hot Jupiters WASP-76 b and WASP-121 b.

The work has been reported by dozens of newspapers and media websites, such as CNN and The Independent.

James Webb detects carbon dioxide in the spectrum of WASP-39b

The first science paper about a transiting exoplanet observed by JWST reports the detection of carbon dioxide in the spectrum of WASP-39b.

NASA’s press release on the “Early Release Science” result gives this image:

In addition they have produced this graphic of how transit spectroscopy works:

James Webb’s spectrum of clear-skies exoplanet WASP-96b

Among the first 5 images released from the James Webb Space Telescope is its first spectrum of an exoplanet, WASP-96. This shows the clear detection of water vapour, and is the first taster of many such results to come:

Here is the transit light-curve from which the spectrum derives:

The JWST results have been reported in a large fraction of the world’s media outlets. This is the first time the spectrum of an exoplanet has lit up New York’s Times Square:

Of numerous media articles on WASP-96b, here is a typical example from The Atlantic.

MPIA press release: An exotic water cycle and metal clouds on the hot Jupiter WASP-121 b

Here’s another catch-up on a recent press release from MPIA, reporting on Hubble Space Telescope observations of WASP-121b.

“A group of astronomers, led by Thomas Mikal-Evans from the Max Planck Institute for Astronomy, have made the first detailed measurement of atmospheric nightside conditions of a tidally locked hot Jupiter. By including measurements from the dayside hemisphere, they determined how water changes physical states when moving between the hemispheres of the exoplanet WASP-121 b. While airborne metals and minerals evaporate on the hot dayside, the cooler night side features metal clouds and rain made of liquid gems. This study, published in Nature Astronomy, is a big step in deciphering the global cycles of matter and energy in the atmospheres of exoplanets.”

“To probe the entire surface of WASP-121 b, we took spectra with Hubble during two complete planet revolutions,” co-author David Sing from the Johns Hopkins University in Baltimore, USA, explains. With this technique and supported by modelling the data, the group probed the upper atmosphere of WASP-121 b across the entire planet and, in doing so, observed the complete water cycle of an exoplanet for the first time.

“On the side of the planet facing the central star, the upper atmosphere becomes as hot as about 3000 degrees Celsius. At such temperatures, the water begins to glow, and many of the molecules even break down into their atomic components. The Hubble data also reveal that the temperature drops by approximately 1500 degrees Celsius on the nightside hemisphere. This extreme temperature difference between the two hemispheres gives rise to strong winds that sweep around the entire planet from west to east, dragging the disrupted water molecules along. Eventually, they reach the nightside. The lower temperatures allow the hydrogen and oxygen atoms to recombine, forming water vapour again before being blown back around to the dayside and the cycle repeats. Temperatures never drop low enough for water clouds to form throughout the cycle, let alone rain.”

“Instead of water, clouds on WASP-121 b mainly consist of metals such as iron, magnesium, chromium and vanadium. Previous observations have revealed the spectral signals of these metals as gases on the hot dayside. The new Hubble data indicate that temperatures drop low enough for the metals to condense into clouds on the nightside. The same eastward flowing winds that carry the water vapour across the nightside would also blow these metal clouds back around to the dayside, where they again evaporate.

“Strangely, aluminium and titanium were not among the gases detected in the atmosphere of WASP-121 b. A likely explanation for this is that these metals have condensed and rained down into deeper layers of the atmosphere, not accessible to observations. This rain would be unlike any known in the Solar System. For instance, aluminium condenses with oxygen to form the compound corundum. With impurities of chromium, iron, titanium or vanadium, we know it as ruby or sapphire. Liquid gems could therefore be raining on the nightside hemisphere of WASP-121 b.”

The press release has been taken up by numerous media and press websites.

NASA press release: Hubble probes extreme weather on ultra-hot Jupiters

Here’s a quick catch-up on a recent NASA/ESA press release. Based on Hubble Space Telescope observations of WASP-178b and KELT-20b, NASA declare:

“In studying a unique class of ultra-hot exoplanets, NASA Hubble Space Telescope astronomers may be in the mood for dancing to the Calypso party song “Hot, Hot, Hot.” That’s because these bloated Jupiter-sized worlds are so precariously close to their parent star they are being roasted at seething temperatures above 3,000 degrees Fahrenheit. That’s hot enough to vaporize most metals, including titanium. They have the hottest planetary atmospheres ever seen.”

Illustration of an ultra-hot Jupiter (Credit: NASA, ESA, Leah Hustak (STScI) )

“In a paper in the April 6 journal Nature, astronomers describe Hubble observations of WASP-178b, located about 1,300 light-years away. On the daytime side the atmosphere is cloudless, and is enriched in silicon monoxide gas. Because one side of the planet permanently faces its star, the torrid atmosphere whips around to the nighttime side at super-hurricane speeds exceeding 2,000 miles per hour. On the dark side, the silicon monoxide may cool enough to condense into rock that rains out of clouds, but even at dawn and dusk, the planet is hot enough to vaporize rock. “We knew we had seen something really interesting with this silicon monoxide feature,” said Josh Lothringer of the Utah Valley University in Orem, Utah.”

The press release has been taken up by over 50 press and media websites.

Aerosol particles make WASP-69b’s atmosphere hazy

“Aerosols have a critical role in establishing energy budgets, thermal structure, and dynamics in planetary atmospheres”, declares a new paper by Raissa Estrela et al.

Aerosols make the planet’s atmosphere hazy, an effect which is more pronounced at the blue end of the spectrum. Here is the spectrum of hot-Jupiter exoplanet WASP-69b, combining Hubble Space Telescope data from several observations.

The steeply rising spectrum (the y-axis shows effective planet size, with a larger size indicating more atmospheric absorption) is modelled (blue line) by including haze from aerosol scattering. The aerosols are found to extend from millibar pressures to microbar pressures.

The authors don’t yet know the composition of the aerosols, but suggest possibilities including hydrocarbons or magnesium silicate condensates. Overall they conclude that: “These results are consistent with theoretical expectations based on microphysics of the aerosol particles that have suggested haze can exist at microbar pressures in exoplanet atmospheres”.

Iron in the atmosphere of the ultra-hot-Jupiter WASP-33b

Here’s a plot from a new paper by David Cont et al, of the University of Göttingen. The plot shows spectra of the WASP-33 system, obtained with the CARMENES near-infra-red spectrograph on the 3.5-m telescope at the Calar Alto Observatory.

The image shows features caused by iron absorption lines, as a function of time (y-axis). The spectra have all been adjusted so that zero velocity (RV) is centred on the host star, WASP-33. The star’s rotation then causes features over the spread of velocities marked by the dashed yellow lines.

One can clearly see the rippling effect of pulsations as they run around the star. The pulsations are likely being excited by the tidal pull of the planet.

In addition, though, and marked by yellow arrows, is a faint diagonal line. This is caused by the planet, WASP-33b, and is the effect of iron absorption lines in the planet’s atmosphere. It moves diagonally across the image owing to the orbital motion of the planet around the star.

By comparing their analysis of iron lines to a similar analysis for Titanium Oxide, the authors show that there is a temperature inversion (higher temperature at greater height) in the atmosphere of the planet.

The spectrum of hot Jupiter WASP-79b

Bloated hot-Jupiter WASP-79b, one of the largest known exoplanets with a radius near twice that of Jupiter, is among the planets scheduled to be observed with the keenly-awaited JWST. In a new paper, Alexander Rathcke et al report on observations made with Hubble. Here’s the spectrum:

The clearest spectral feature, in the range observed with the WFC3 G141 grating, is attributed to water vapour. The authors also interpret the spectrum as showing opacity due to H ions and the effects of faculae on the host star, that are 500 K hotter than most of the star’s surface. They say that this “underscores the importance” of observing a wide wavelength range in order to “disentangle the influence of unocculted stellar heterogeneities from planetary transmission spectra”.

No clouds on the dayside of WASP-43b

As you’ll likely know from flying in an aircraft above the weather, clouds are bright, they reflect a lot of sunlight. This means that if a hot-Jupiter exoplanet has a cloudy atmosphere, then it should also be relatively bright, and so we should be able to detect a discernible drop in light when it it eclipsed behind its host star.

A new paper by Jonathan Fraine et al analyses data obtained with the Hubble Space Telescope WFCS/UVIS instrument to look for the eclipse of WASP-43b. Here is the result (with the data compared to model eclipse profiles):

The authors find no significant eclipse, deriving only an upper limit to any drop in light of 67 parts-per-million, which means that the dayside face of the planet is reflecting less than 6% of the illuminating starlight. And that means “that we can rule out a high altitude, bright, uniform cloud layer”.

Fraine et al remark that “Because of its observational and atmospheric viability for spectroscopic detections, WASP-43b has become a benchmark planet for current and future hot Jupiter observations. Upcoming … JWST observations [will] map the thermal structure and chemical composition of this exoplanet with exquisite detail … We expect that no other exoplanet has or will be observed with this much precision and wavelength coverage for many years to come.”

The importance of cloud-free skies is that one can then see atomic and molecular spectral features much more readily, and so learn much more about the atmosphere’s composition.