Tag Archives: WASP-19b

TESS phase curve of WASP-19b

The space-based photometry from the TESS satellite is producing high-quality light curves of many of the WASP exoplanets. Here is the lightcurve of WASP-19b, from a new paper by Ian Wong et al:

In addition to the transit (phase zero), the lightcurve shows a shallower eclipse of the planet (phase 0.5) and a broad variation caused by the changing aspect of the heated face of the planet. Unlike in some planets, the hottest part of the planet directly faces the star, so there is no offset in the phase of the broad modulation.

Wong et al deduce that the dayside face of the planet is heated to 2240 ± 40 K, that there is no flux detected from the colder night side, and that the planet reflects 16 ± 4 percent of the light that falls on it. The last value is relatively high compared to other planets.

The orbit of WASP-12b is decaying

Here’s the latest update on the changes in the orbital period of WASP-12b, from a new paper by Samuel Yee et al.

The times of transit are getting earlier, which means that the period is decreasing slightly. By also considering the times of occultation (when the planet passes behind the star), and also the radial-velocity measurements of the system, the authors deduce that the changes are not the effect of some other planet, but are a real decay in the orbit of WASP-12b. This is expected to occur as a result of tidal interactions between the planet and its host star.

One notable conclusion is that the rate of period decay in WASP-12b is much faster than that in WASP-19b, which shows no detectable period change yet, despite it being an even shorter-period hot Jupiter, which should increase tidal interactions. Yee et al suggest that the difference could arise if the host star WASP-12 is a sub-giant star, whereas WASP-19 is not.

Update: Following an article on WASP-12b’s orbital decay, supplied by Liz Fuller-Wright of Princeton University, and appearing in phys.org and Science Daily, the work has gained media attention from CNN, Science Times, Universe Today, and the UK’s Metro.

No period change for WASP-19b

Since close-orbiting hot Jupiters are expected to be gradually spiralling inwards, under the influence of tidal interactions with their stars, and since, in addition, the influence of extra, unseen planets in the system could cause changes in transit times, many groups worldwide are monitoring timings of transits of WASP planets.

The latest report on timings of WASP-19b has just been announced by Petrucci et al. The result is the following diagram, showing deviations of timings from a constant ephemeris, plotted against cycle number.

The upshot is that there is no indication of any period change, which then puts limits on how efficient the tidal bulges, caused by the gravitational interaction of the planet with the star, are at dissipating energy.

It is notable, however, that there is clear scatter about the constant-period line, beyond that expected from the error bars on the timings. This means either that the error bars are under-estimating the uncertainties (as would occur if “red noise” in the lightcurves is unaccounted for), or that there is astrophysically real scatter in the timings, perhaps caused by magnetic activity (star spots) on the surface of the star being transited. We need to better understand such timing scatter if we are to be able to judge whether claims of period changes are actually real.

Night-side clouds on hot Jupiters

Thomas Beatty et al have an interesting new paper on arXiv today, primarily about the transiting brown dwarf KELT-1b. They’ve used the Spitzer Space Telescope to record the infra-red light as it varies around the 1.3-day orbit.

They end up with the following plots (KELT-1b is on the right, with the plot for the planet WASP-43b on the left):

The x-axis is “colour”, the difference in flux between two infra-red passbands at 3.6 and 4.5 microns. The y-axis is brightness (in the 3.6 micron band). The underlying orange and red squares show where typical M-dwarf stars and L and T brown dwarfs fall on the plot.

The solid-line “loops” are then the change in position of the atmospheres of KELT-1b and WASP-43b around their orbits. At some phases we see their “day” side, heated by the flux of their star, and at others we see their cooler “night” side.

The blue line is the track where something would lie if there were no clouds in its atmosphere. The fact that KELT-1b’s loop doesn’t follow the blue track, but moves significantly right (to cooler colours) implies that the night side of the brown dwarf must be cloudy. The night side of WASP-43b, however, appears to be less cloudy, according to its track.

Here are the same plots for two more planets:

The plot for WASP-19b shows a loop with a marked excursion to the right, suggesting a cloudy night side to the planet. For WASP-18b, however, the loop follows a trajectory nearer the blue “no cloud” track, suggesting a clearer atmosphere.

A bright spot on the host star of WASP-19b

Star spots are cooler regions of a star’s surface, caused by magnetic activity, and emit less light. If a planet transits across a spot it blocks less light, and so we see a slight rise, a bump, in the transit profile.

On the left (in blue) is a transit from a new paper by Espinoza et al, who have observed transits of WASP-19b with the Magellan telescope. A clear bump is seen, indicating that the planet passed over a cooler spot.

On the right (in red), however, is another transit showing a clear dip compared to the expected transit lightcurve. This implies that during this transit the planet passed over a brighter region on the star. This is the first time such an event has been seen.

The authors deduce that the bright spot must have a size of about a quarter of the stellar radius and must be 100 K hotter than the rest of the star. Such regions are not seen on our own Sun.

The main point of the observations, however, was not studying spots but studying the planet’s atmosphere by recording how the transit depth changes with wavelength. Here is the state-of-play for the spectrum of WASP-19b, covering optical to infra-red wavelengths:

The red data-points are from the Hubble Space Telescope, showing a spectral feature, but the new data by Espinoza et al (white points) are consistent with a flat spectrum within the limits of the data.

Titanium oxide in the atmosphere of WASP-19b

The European Southern Observatory have put out press release about observations of WASP-19b with the Very Large Telescope. A team led by ESO Fellow Elyar Sedaghati have found titanium oxide in the atmosphere of an exoplanet for the first time.

ESO’s graphic (credit: ESO/M. Kornmesser) illustrates how observations during transit allow us to analyse an exoplanet’s atmosphere. The star light shines through the atmosphere, where light at particular wavelengths is absorbed by molecules, causing the light that we see to carry a distinctive signature of the atmosphere’s composition.

The team observed three different transits of WASP-19b, each in a different colour, to produce one of the best transmission spectra of an exoplanet so far. The titanium oxide (TiO) features are marked, along with those from water (H2O), sodium (Na) and scattering due to haze.

ESO’s press release has led to coverage on several dozen news- and science-related websites. ESO have also produced an artist’s impression of WASP-19b:

Gaia detects transits of WASP exoplanets

ESA’s Gaia satellite is a €740-million mission to map a billion stars in our galaxy. By observing repeatedly with unprecedented astrometric precision it is measuring the parallaxes, and thus the distances, of hundreds of millions of stars, and so mapping out the 3-D structure of our galaxy.

Gaia can detect exoplanets in two ways, first by astrometry (measuring the position of a star), so detecting the wobble in the star’s location caused by an orbiting massive planet, and secondly by the transit method, detecting the dip in the light of a star caused by a transiting planet.

The Gaia team have just announced the first detections of exoplanet transits, by looking at the accumulated Gaia data on two already-known WASP planets.

ESA's Gaia satellite detects its first exoplanet transit

The plot shows a year’s worth of Gaia data of the star WASP-19, folded on the 0.79-day orbital period of the planet WASP-19b (the three different panels are the star’s magnitude in three different colours). The coverage is sparse — it is designed for astrometric measurements, not for recording lightcurves — but one observation was made in-transit, demonstrating that Gaia can indeed detect exoplanet transits.

The ESA/Gaia team have also looked at the data on WASP-98, and again detect the transit of WASP-98b.

ESA's Gaia satellite detects exoplanet transit of WASP-98b

HATS-18b and short-period hot Jupiters

Congratulations to the HATSouth project for the discovery of HATS-18b, a hot Jupiter with the very short orbital period of only 0.84 days. The other known hot Jupiters with periods below 1 day are all WASP-South discoveries (WASP-19b at 0.79 d, WASP-43b at 0.81 d, WASP-103b at 0.93 d and WASP-18b at 0.94 d).

Since such short-period systems are the easiest to find in transit surveys (owing to lots of transits!) they must be very rare, presumably because tidal forces are causing the orbits to decay, so that the planets spiral into their stars on relatively short timescales of tens of millions of years.

The HATSouth team note that the rotational periods of the host stars of HATS-18b and WASP-19b are much shorter than expected given the ages of the stars, and suggest that the stars have been spun up by the same tidal interaction that caused the planet’s orbit to decay. By modelling the in-spiral process Penev et al arrive at constraints on the “quality factor” Q* of the star. This is a measure of how efficient the star is at dissipating the tidal energy resulting from the planet’s gravitational tug on the star, and this sets the timescale for the tidal decay. Penev et al argue that the log of Q* is between 6.5 and 7, one of the tightest constraints yet estimated.

Stellar tidal decay quality factor

Estimates of the tidal quality factor, from modelling the HATS-18b and WASP-19b systems. The different models use different assumptions and are explained in the text. Figure by Penev et al.

New HATSouth planets gives us at WASP a check on our methods, since we can look for them in our own data (and if we don’t see them we can ask why not). At V = 14.1, HATS-18 is fainter than any of the WASP host stars, and fainter than we would adopt as a candidate (HATSouth is optimised to get better photometry on a slightly fainter magnitude range, whereas WASP-South is optimised for a wider field). Nevertheless, 26 000 data points from WASP-South do detect the transit of HATS-18b, giving a detected signal at the 0.837-day period and its first harmonic (1.67-d) in the period search:

hats18per

There is then a clear detection of the transit when the data are folded on the transit period:

hats18bfld

This is thus the faintest detection of a planet yet by WASP-South and so is reassuring about WASP data quality.

Calculations of hot-Jupiter tidal infall

Closely orbiting hot Jupiters raise a tidal bulge on their star, just as our Moon does on Earth. Since the planet is orbiting faster than the star rotates, the tidal bulge will tend to lag behind the planet and so its gravitational attraction will pull back on the planet. The orbit of the planet is thus expected to decay, with the planet gradually spiralling inwards to destruction.

Calculating how long this will take is hard, and depends on the efficiency with which energy is dissipated in the tidal bulge of the star. This is summed up by a number called a quality factor, Q, which is, crudely, the number of orbital cycles required to dissipate energy. The higher this number the slower the decay of the planet’s orbit.

In a new paper, Reed Essick and Nevin Weinberg, of the Massachusetts Institute of Technology, present a detailed calculation of Q for hot Jupiters orbiting solar-like stars. They arrive at values for Q of 105 to 106, assuming a planet above half a Jupiter mass and an orbital period of less than 2 days.

Hot Jupiter orbital decay timescales

The figure shows the resulting infall timescales of all the hot Jupiters predicted to have remaining lifetimes of less than 1 Gyr. By far the smallest lifetime is that for WASP-19b, which is predicted to spiral into its star within 8 million years. This would mean that shifts in WASP-19b’s transit times would be readily detectable, with a shift accumulating to 1 minute in only 5 years.

The calculations presented here are at odds with deductions that Q must be around 107, based on explaining the current distribution of hot-Jupiter periods (e.g. Penev & Sasselov 2011), which would give a much slower orbital decay. We can determine who is right by monitoring transits of WASP-19b and similar systems over the coming decade, and it will be interesting to discover who is right.

Energy recirculation in the hot Jupiter WASP-19b

A team led by Ian Wong of Caltech have announced observations of the hot Jupiters WASP-19b and HAT-P-7b, looking at infra-red light using the Spitzer Space Telescope. By observing the planets around their entire orbit they detect the transit, caused by the planet passing in front of the host star, the secondary eclipse, when the planet passes behind the star, and the “phase curve” caused by the changing visibility of the heated face of the planet.

WASP-19b Spitzer lightcurve

The figure shows the infra-red light (“heat”) of the WASP-19 system in two pass bands (3.6 microns and 4.5 microns). The middle panels are expanded to show the phase curve, while the lowest panels show the residuals about a fitted model (the red line).

By fitting all three features, the authors can constrain the temperatures of the “day time” heated face of the planet (which faces towards us near the secondary eclipse) and of the “night time” face of the planet (which faces us near transit). From there they can estimate the “recirculation”, how efficient the planet is at redistributing heat from the day-time face to the night-time face.

Such short-period planets are phase-locked by tidal forces, and so always present the same face to the star. Thus redistribution of heat energy requires powerful winds circling the planet.

An interesting plot by Wong et al shows the recirculation in different hot Jupiters against the albedo (the fraction of energy that is reflected).

Energy recirculation in hot Jupiters.

There appear to be two groups of hot Jupiters: ones with albedos near 0.4, such as WASP-19b, and ones with much lower albedos, such as WASP-14b and WASP-18b. So far there is no simple explanation for this difference.

Further, the recirculation efficiency also appears to be different in different systems. Wong et al suggest that the hot Jupiters experiencing the highest irradiation, such as WASP-19b, are least efficient at redistributing heat, while
longer-period, less-irradiated hot Jupiters such as HD209458b and HD189733b are better at redistribution.