Tag Archives: WASP-10b

The atmospheres of WASP planets with JWST

The James Webb Space Telescope is expected to revolutionise the study of exoplanet atmospheres following its launch in 2018, and WASP planets will be among the prime targets. Paul Mollière et al have been simulating the data expected, and have produced this illustration of the atmospheric emission spectrum of WASP-18b.

Spectrum of exoplanet WASP-18b as observed with JWST

The different coloured curves result from different assumptions about WASP-18b’s atmosphere. The lines along the bottom illustrate the spectral coverage of the different JWST instruments. In contrast to existing data (Spitzer results are shown as black squares), the JWST data will have both the spectral resolution and signal-to-noise to differentiate clearly between different models.

Mollière et al have also simulated spectra for cooler planets, such as WASP-10b and WASP-32b.

WASP-10b and WASP-32b simulated atmospheres observed with James Webb Space Telescope.

The different models are for different abundances of carbon relative to oxygen (C/O), showing that JWST should be able to settle the issue of which exoplanets have enhanced abundances of carbon relative to the Solar System.

Such simulations show that the results from JWST should be spectacular, opening up whole new areas of enquiry.

Advertisements

Spitzer observations of cool WASP planets

A new paper by Joshua Kammer et al reports observations of 5 transiting hot-Jupiter planets with the Spitzer Space Telescope. The Spitzer infra-red observations looked for the occultation of the planet, when it passes behind its host star. By comparing the observed emission in and out of the occultation one can deduce the temperature of the planet’s atmosphere.

Kammer and colleagues chose to look at 5 relatively cool hot-Jupiter planets (ones around cooler stars, or orbiting further from the star), with expected temperatures in the range 900 to 1200 K. Of the 5, four were WASP planets (WASP-6b, WASP-10b, WASP-39b and WASP-67b).

The point of looking at cooler planets is that the ratio of the light in two Spitzer pass-bands, 3.6 and 4.5 microns, is expected to depend on the metallicity (the abundance of elements heavier than hydrogen and helium) of the planet’s atmosphere.

The authors found a tentative but possible relation between that ratio and the mass of the planet.

kammer

The plot shows the brightness ratio in the two pass-bands against planet mass. The named planets are also colour-coded by the planet’s temperature (where the top bar shows the scale in Kelvin). There is a possible trend to a higher ratio at higher masses (WASP-8b is a clear outlier to the trend, and the authors suggest that this might be because it is in a highly eccentric orbit).

Kammer et al say that “If this trend can be confirmed, it would suggest that the shape of these planets’ emission spectra depends primarily on their masses, consistent with the hypothesis that lower-mass planets are more likely to have metal-rich atmospheres.”