Tag Archives: Ultra-hot Jupiters

CHEOPS observes WASP-189b

ESA’s CHEOPS satellite was launched to produce high-quality light-curves of exoplanet systems. A new paper led by Adrien Deline of the University of Geneva now reports CHEOPS observations around the orbit of the ultra-hot-Jupiter WASP-189b. The figure shows the transit (planet passing in front of the star), the eclipse (the planet passing behind the star) and a slower variation caused by the varying visibility of the heated face of the planet.

One notable feature of the transit of WASP-189b is that it is distinctly asymmetrical. This is caused by gravity darkening, which occurs when a star is rapidly rotating. The centrifugal forces cause the equatorial regions to be pushed outwards, producing an equatorial bulge. Since the bulge is then further from the star’s centre, the surface gravity will be lower, and that means that the surface will be cooler and thus dimmer.

The illustrations below show the asymmetry, where the dashed line in the lowest panel shows the difference between a transit model both with and without gravity darkening. The right-hand panel illustrates the polar orbit of the planet.

Tidal deformation of WASP-103b

With ultra-hot Jupiters being so near to their star their shape is predicted to be distorted away from spherical by the tidal effects of the host-star’s gravity. The resulting “rugby-ball” shape (more technically called a “Roche lobe”) will then produce a transit profile that is slightly different from that produced by a spherical planet.

The CHEOPS team now report that they have detected this distortion in the case of WASP-103b. A press release presents the infographic:

The CHEOPS observations of transits of WASP-103b are shown below (grey points). The blue model is the expected profile for a deformed planet, while the green line (lowest panel) is the expected difference in transit profile between a deformed planet and a spherical planet. The CHEOPS team show statistically that the data prefer the deformed shape, at a confidence level of 3σ.

The authors, Susana Barros et al, explain that the degree of tidal deformation constrains the distribution of mass within the planet, since the gaseous hydrogen envelope is much easier to deform than the rocky core. ESA have produced an artist’s illustration showing the distorted shape of WASP-103b:

Following ESA’s press release, the work has been reported by CNN, Newsweek, the BBC, the Daily Mail, The Sun, The Independent and numerous other websites in multiple languages.

Iron in the atmosphere of the ultra-hot-Jupiter WASP-33b

Here’s a plot from a new paper by David Cont et al, of the University of Göttingen. The plot shows spectra of the WASP-33 system, obtained with the CARMENES near-infra-red spectrograph on the 3.5-m telescope at the Calar Alto Observatory.

The image shows features caused by iron absorption lines, as a function of time (y-axis). The spectra have all been adjusted so that zero velocity (RV) is centred on the host star, WASP-33. The star’s rotation then causes features over the spread of velocities marked by the dashed yellow lines.

One can clearly see the rippling effect of pulsations as they run around the star. The pulsations are likely being excited by the tidal pull of the planet.

In addition, though, and marked by yellow arrows, is a faint diagonal line. This is caused by the planet, WASP-33b, and is the effect of iron absorption lines in the planet’s atmosphere. It moves diagonally across the image owing to the orbital motion of the planet around the star.

By comparing their analysis of iron lines to a similar analysis for Titanium Oxide, the authors show that there is a temperature inversion (higher temperature at greater height) in the atmosphere of the planet.

Weather on ultra-hot-Jupiter WASP-121b?

Here’s a plot of the spectrum of the ultra-hot-Jupiter WASP-121b. It’s from a new paper led by Jamie Wilson of Queen’s University Belfast.

The plot compares results from different instruments at different times. In particular the green points are from the ground-based Gemini/GMOS instrument, and are fitted by the model in red. The light-blue points (and fitted purple model) are from the space-based HST/STIS instrument.

Clearly the two datasets are not consistent. One possible explanation would involve instrumental systematics that are not properly accounted for in the analysis. Such analyses are right at the edge of what can be done, pushing the instruments beyond their designed capabilities, and reducing the datasets to a properly calibrated spectrum is a demanding task.

The other possible explanation is that WASP-121b really was different on the two occasions, and that “weather” on the planet is affecting its atmosphere. Just as Earth’s atmosphere can change from clear to cloudy, we expect that the same could be occurring on exoplanets.

The authors say that: “WASP-121b is expected to have wind speeds of 7 km/s and a pressure–temperature profile which lies near the condensation curves of a number of species”, and thus: “It is therefore perhaps not all that surprising that small temperature fluctuations could result in significant spatial and temporal variations in atmospheric constituents and could lead to measurable variations in transit measurements.”

ESPRESSO looks at ultra-hot-Jupiter WASP-121b

ESPRESSO is ESO’s state-of-the-art spectrograph for the Very Large Telescope, specifically designed to get the best data possible on planetary systems.

Francesco Borsa et al have pointed ESPRESSO at transits of the ultra-hot-Jupiter WASP-121b, and the ESPRESSO team have put out a series of Tweets explaining the paper:

Dayside spectrum of the ultrahot-Jupiter WASP-121b

Thomas Mikal-Evans et al have released a new paper analysing the heated, dayside face of WASP-121b. Teams studying the atmospheres of exoplanets either look at the transit, when the planet’s atmosphere is projected against the host star, such that molecules produce absorption features in the spectrum, or they study the eclipse, when the heated face of the planet disappear and then reappears. In the latter, atmospheric molecules produce emission features in the spectrum.

Here is the spectrum of the heated face of WASP-121b, based on recording five eclipses using the WFC3 spectrograph on the Hubble Space Telescope. The orange line and yellow banding show the spectrum expected for a pure black body of the same temperature as the planet. The red lines then show model fits, which reveal emission features caused by H ions and water (H2O) molecules.

Detection of iron in the ultra-hot-Jupiter WASP-121b

Three papers this week arrived on arXiv about the ultra-hot-Jupiter WASP-121b. All three report similar findings (and the near-simultaneous arrival on arXiv presumably reflects the teams being aware of the competition). Cabot et al analyse spectra of WASP-121b from the ESO 3.6-m/HARPS spectrograph, Bourrier et al also analyse HARPS data, while Gibson et al analyse data from UVES on ESO’s 8-m VLT.

All three teams then apply velocity shifts to correct for the orbital motion of the star, in order to try to detect features from the planet. The result is a plot looking like (this is the one from Bourrier et al):

As in the plot for WASP-107b, just below, this shows the spectra as a function of time, through transit. The extra absorption during transit (delineated by dashed lines) is from the atmosphere of the planet absorbing starlight while it is projected against the star’s face. The faint diagonal feature (marked by the green line) is the signal from the planet’s atmosphere, moving with the planet’s orbital velocity.

A schematic of WASP-121b as it transits its hot star in a near-polar orbit (from Bourrier et al).

The three papers report the detection of lines from neutral iron in the planet’s atmosphere, and discuss the possible role of iron absorption in producing an atmospheric temperature inversion. The papers also report a blue-shift of the iron absorption, of order 5 km/s, which could be produced by strong winds running round the planet. That is expected in phase-locked planets, where heat from the irradiated face must be transported round to the night side.

WASP-121b observed by TESS

As is sometimes the way when prime observations are open access, two independent papers (Daylan et al 2019; Bourrier et al 2019) have, on the same day, announced independent analyses of the TESS lightcurve of the ultra-hot Jupiter WASP-121b.

The phase curve shows the transit (time zero), a “phase curve” modulation caused by the varying visibility of the heated face of the planet (illustrated by schematics of the planet), and the eclipse (when the planet passes behind the star, at −15 hr).

Both analyses report similar findings, saying that the heated “hot spot” directly faces the star, rather than being offset in phase, which suggests that any re-circulation of heat by planetary winds is inefficient.

The planet’s atmosphere shows a temperature inversion (it is hotter at higher altitudes), which could result from absorption of heat by molecules of titanium and vanadium oxide, and H-minus ions.