Tag Archives: WASP-189

First results from ESA’s Cheops: WASP-189b

ESA’s Cheops satellite (the Characterising Exoplanet Satellite) started observing this year, and ESA has just put out a press release announcing its first science results. Cheops looked at transits and occultations of WASP-189b, an ultra-hot Jupiter in a polar orbit transiting a bright star.

“Only a handful of planets are known to exist around stars this hot, and this system is by far the brightest,” says Monika Lendl of the University of Geneva, Switzerland, lead author of the new study. “WASP-189b is also the brightest hot Jupiter that we can observe as it passes in front of or behind its star, making the whole system really intriguing.”

At a visual magnitude of V = 6.6, WASP-189 is the brightest host star of all the WASP planets. The discovery of the transiting hot Jupiter was announced in 2018 in a paper led by David Anderson. The exceptional nature of WASP-189 thus made it a prime target for Cheops.

The Cheops study shows that: “the star itself is interesting – it’s not perfectly round, but larger and cooler at its equator than at the poles, making the poles of the star appear brighter,” says Dr Lendl. “It’s spinning around so fast that it’s being pulled outwards at its equator!”

“This first result from Cheops is hugely exciting: it is early definitive evidence that the mission is living up to its promise in terms of precision and performance,” says Kate Isaak, Cheops project scientist at ESA.

Press coverage has included articles in CNN, CTV, the International Business Times, The Sun, The Mirror, The Daily Mail, The Express and over 30 other news sites.

A Hot Polar Planet

Scientific American Blogs has picked up on our recent announcement of WASP-189b, an ultra-hot Jupiter transiting the bright A star HR 5599 in a polar orbit.

The host star, HR 5599, has a visual magnitude of V = 6.6, making it the brightest host star of a transiting hot Jupiter. The Scientific American piece, written by Caleb Scharf, focuses on the fact that the planet is in near-perfectly aligned polar orbit, saying:

“Like with other mis-aligned hot-Jupiter worlds, the big question is how does this situation arise? We don’t know for sure. One idea is that these planets have to form at larger distances from their stars and then migrate inwards — due to interactions either with a proto-planetary disk or other worlds, or both. Those interactions can also pump up the ellipticity of the orbit and its inclination. Later on the tidal forces between the planet and the star can pull it in close, but preserve a high orbital inclination…maybe.”

Credit: NASA, JPL, Caltech