Possible orbital period decay in WASP-43b?

Since hot-Jupiter planets have close-in orbits they will raise a tidal bulge on their host star. Since the planet’s orbit is faster than the star’s rotation, that bulge will tend to lag behind the planet. Its gravity will thus pull back the planet slightly, draining angular momentum from the planet’s orbit.

Hot Jupiters, especially the shortest-period ones, are thus expected to be gradually spiralling inwards, and many will eventually spiral into their star. An important issue is how fast this happens. We can obtain theoretical estimates, but it would be good to have a direct measurement of the decay. Thus the transits of the shortest-period hot Jupiters are being monitored to see whether their orbital period is decreasing.

Ing-Guey Jiang et al have just produced a paper based on new transit observations of WASP-43b, an ultra-short-period hot Jupiter which orbits in 0.81 days. They arrive at this plot:

Transit timings and period decay in WASP-43b

The x-axis is time, in a count of transits, while the y-axis is the “observed minus calculated” time of transits, being the observed deviation of a transit timing from the expected time. The data points are the transit timings by Jiang et al and from previous papers.

A constant orbital period would correspond to the dotted line. A very fast period change (as has been previously suggested) would correspond to the dashed curve, and Jiang et al now rule that out. Their best fit is the solid curved line, which has a slower rate of change, but still seems to suggest a changing orbital period.

This is interesting work, and if it really does reveal a period change in WASP-43b then it is highly important. My feeling is to be cautious for now. It is clear from the plot that there is scatter in the transit timings that is larger than the error bars, and we don’t really know what short-term or medium-term “noise” there might be in exoplanet transit timings, since we’re only beginning to study them.

The period change suggested by Jiang et al corresponds to a tidal decay rate specified by the number Q = 105 (where “Q” is the tidal “quality factor” that depends on how much energy is dissipated in the tidal bulge on the star during each orbit). However, it is generally considered that the Q values are more likely to be 107 for hot Jupiters (see here), which would produce a much slower orbital decay.

Thus, the period change in the above figure could be a short-timescale fluctuation (for ill-understood reasons) rather than the true long-term orbital-period decay. The fact that, by adding more timings, Jiang et al have reduced the previous estimate for the period change by an order of magnitude suggests that the same might happen given future timings. Still, this is important work, and it will be interesting to see how it progresses.

Inhabitants of WASP-47 could see an Earth transit!

The planetary system WASP-47 is highly popular at the moment, following the K2 discovery of two more transiting exoplanets, and the radial-velocity detection of a longer-period outer planet, in addition to the orginal hot Jupiter, WASP-47b.

But here’s an additional curiosity: WASP-47 is so close to the plane of our own solar system, aligned to better than 0.26 degrees, that Earth would be seen to transit from WASP-47!

Christopher Burke, of the SETI Institute, has produced this graphic of an Earth transit as seen from the location of WASP-47.:

Earth transit seen from WASP-47

And, supposing that the inhabitants of the WASP-47 system had a spacecraft like Kepler, this is what the transit they might record would look like:

Earth transit seen from WASP-47

Of course it is only speculation that there are inhabitants of WASP-47, though, with four planets known so far in the system, there might be some planet or moon that is inhabitable. If they had detected Earth, they might then point their biggest telescope at the next transit, and perhaps find free oxygen in Earth’s atmosphere, and so deduce that Earth has life.

Chris Burke suggests that WASP-47 is a very good SETI target; they might already know about us!

Masses for WASP-47’s planets

Since the discovery by K2 of two more transiting exoplanets orbiting WASP-47, plus a fourth planet at a much longer orbital period, this system has shot to the top of the priority lists. A team led by Fei Dai of MIT have thus pointed the 6.5-m Magellan/Clay telescope at WASP-47 to try to measure the radial-velocity signal, and hence the masses, of the two planets found by K2.

WASP-47 radial velocities

The figure shows the complex radial-velocity motion in a multiple-planet system. The blue curve is the radial-velocity motion caused by the 4.2-day-period hot-Jupiter WASP-47b, as originally found by the WASP project. The yellow curve is caused by the 0.79-day planet WASP-47e, the green curve by the 9-day planet WASP-47d, and the purple by the much-longer-period WASP-47c. The red line is then the sum of all the planets and the black dots are the measurements by Dai et al.

By fitting all of the data, Dai et al show that the innermost planet, WASP-47e, has a mass of 12 +/- 4 Earths, while the 9-day planet WASP-47c has a mass of 10 +/- 8 Earths. Both results are in line with previous mass estimates from transit-timing variations, which helps to validate mass measurements by both the RV and the TTV techniques.

Congratulations to KELT-South on KELT-10b

KELT-South is a competitor to WASP-South, and indeed sits near WASP-South on the same plateau at SAAO’s Sutherland observatory site, performing a similar transit search.

KELT-South have just announced their first discovery, KELT-10b, a highly inflated planet that is larger than Jupiter (at 1.4 Jupiter radii) but less massive than Saturn (at 0.68 Jupiter masses). With WASP-South, HATSouth, KELT-South and the imminent NGTS, there are now four ground-based transit searches discovering planets in the Southern skies.

One advantage of the competition is that we can “reverse engineer” other teams’ planets to improve our own procedures. Indeed, trying to work out why we missed HAT and KELT planets has previously revealed bugs in our software.

Since we cover millions of stars the only way to look for transits is by automated search routines, but these throw up so many “false positive” detections that in the end we have to select candidates by eye. Humans are fallible, and it seems we simply overlooked KELT-10b. We have only relatively sparse data on it, fewer than 5000 photometric points, but, still, the presence of a transit dip at the correct period seems obvious enough once one knows that it is there. Here are the WASP-South data folded on the transit period, and the periodogram analysis revealing the periodic dip:

WASP data on KELT-10b

Congratulations to the KELT-South team on getting there first and on a fine discovery!

The orbit of WASP-33b is precessing

Hot Jupiter planets are in tight orbits around their host star, and since that star will not be perfectly spherical, small gravitational perturbations should cause the orbit to precess. A team led by Marshall Johnson has now shown that this is indeed happening in WASP-33.

WASP-33 is a very hot, rapidly rotating A-type star. This means the planet is only detected by the “shadow” that it causes in the profiles of the spectral lines of the star during transit.

Since the star is rotating the spectral lines will be broadened by the Doppler effect, with photons from the approaching limb being blue-shifted and photons from the receding limb being red-shifted. As the planet transits the star, it blocks the light from one small region of the star’s surface. This removes the photons that are Doppler shifted with the velocity of that part of the star’s surface.

The trace of the planet across the star’s surface during transit can therefore be seen as a stripe moving in velocity across the profile of the star’s spectral lines. This is seen in these false-colour images of the spectral line of WASP-33, taking during two transits, six years apart:

WASP-33 line profiles

WASP-33 line profiles

The white diagonal stripe is the path of the planet, blocking out the photons below it. The stripe is clearly in a different place in the two observations. This means that the path of the orbit has changed. Johnson et al give the following schematic of how they think the orbit of the planet has changed between the two observations.

WASP-33 precession

This observation validates the theory that the orbit should be precessing, and is only the second detection of nodal precession in an exoplanet orbiting a single star, after the example of Kepler-13 Ab.

Four planets around WASP-47!

As NASA’s Kepler mission covers fields in the ecliptic previously surveyed by WASP, it is obtaining photometry of unprecedented quality on some WASP planets. The big news this week is the discovery of two more transiting planets in the WASP-47 system.

WASP-47 had seemed to be a relatively routine hot-Jupiter system with the discovery of a Jupiter-sized planet in a 4-day orbit, reported in a batch of transiting planets from WASP-South by Hellier et al 2012.

But WASP-47 is anything but routine. Now Becker et al have announced that the Kepler K2 lightcurves show two more transiting planets: a super-Earth planet in an orbit of only 0.79 days, and a Neptune-sized planet in an orbit of 9.0 days. Being much smaller, these planets cause transits that are too shallow to have been seen in the original WASP data.

WASP-47 transits with Kepler K2

The super-Earth, labelled WASP-47c, has a radius of 1.8 Earths while the Neptune, labelled WASP-47d, has a radius of 3.6 Earths. The triple-planet system is dynamically stable, but the gravitational interaction causes perturbations in the orbits, leading to variations in the times of the transits.

Such “transit-timing variations” or TTVs lead to estimates of the planetary masses. Becker et al find that the hot Jupiter has a mass of 340 Earths (consistent with the mass of 360 Earths originally reported by Hellier et al from radial-velocity measurements), while the Neptune has a mass of 9 Earths. The super-Earth must be less massive than that, but current timing measurements are not sensitive enough to say more.

WASP-47 TTVs Transit timing variations

As if three planets were not enough, there is a probable fourth planet orbiting WASP-47. The Geneva Observatory group routinely monitor known WASP systems, taking radial-velocity measurements over years, to look for longer-period planets. Marion Neveu-VanMalle and colleagues have recently reported the detection of another Jupiter-mass planet orbiting WASP-47, this time in a much wider orbit of 571 days.

The WASP-47 system has now become hugely interesting for understanding exoplanets, and will trigger many additional observations of the system. For example, being bright enough to allow good radial-velocity data, it will provide a much-needed check that the mass estimates from TTVs match those from the more traditional radial-velocity technique.

The system will also be of strong interest to theorists, who will want to understand the formation and origin of a planetary system with this architecture. One immediate consequence is that it shows that a hot Jupiter can arise by inward migration through the proto-planetary disk, without destroying all other planets in its path.

Spitzer observations of cool WASP planets

A new paper by Joshua Kammer et al reports observations of 5 transiting hot-Jupiter planets with the Spitzer Space Telescope. The Spitzer infra-red observations looked for the occultation of the planet, when it passes behind its host star. By comparing the observed emission in and out of the occultation one can deduce the temperature of the planet’s atmosphere.

Kammer and colleagues chose to look at 5 relatively cool hot-Jupiter planets (ones around cooler stars, or orbiting further from the star), with expected temperatures in the range 900 to 1200 K. Of the 5, four were WASP planets (WASP-6b, WASP-10b, WASP-39b and WASP-67b).

The point of looking at cooler planets is that the ratio of the light in two Spitzer pass-bands, 3.6 and 4.5 microns, is expected to depend on the metallicity (the abundance of elements heavier than hydrogen and helium) of the planet’s atmosphere.

The authors found a tentative but possible relation between that ratio and the mass of the planet.


The plot shows the brightness ratio in the two pass-bands against planet mass. The named planets are also colour-coded by the planet’s temperature (where the top bar shows the scale in Kelvin). There is a possible trend to a higher ratio at higher masses (WASP-8b is a clear outlier to the trend, and the authors suggest that this might be because it is in a highly eccentric orbit).

Kammer et al say that “If this trend can be confirmed, it would suggest that the shape of these planets’ emission spectra depends primarily on their masses, consistent with the hypothesis that lower-mass planets are more likely to have metal-rich atmospheres.”